Multi-Label Classification of Fundus Images With EfficientNet
نویسندگان
چکیده
منابع مشابه
Multi-label Classification of Satellite Images with Deep Learning
Up-to-date location information of human activity is vitally important to scientists and governments working to preserve the Amazon rainforest. We implement a Convolutional Neural Network (CNN) model to perform multi-label classification of Amazon satellite images. Our model identifies the weather conditions and natural terrain features in the images as well as man-made developments such as roa...
متن کاملMulti-Label Classification with Label Constraints
We extend the multi-label classification setting with constraints on labels. This leads to two new machine learning tasks: First, the label constraints must be properly integrated into the classification process to improve its performance and second, we can try to automatically derive useful constraints from data. In this paper, we experiment with two constraint-based correction approaches as p...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملMulti-label classification for colon cancer using histopathological images.
Colon cancer classification has a significant guidance value in clinical diagnoses and medical prognoses. The classification of colon cancers with high accuracy is the premise of efficient treatment. Our task is to build a system for colon cancer detection and classification based on slide histopathological images. Some former researches focus on single label classification. Through analyzing l...
متن کاملQuantitative analysis of multi-spectral fundus images
We have developed a new technique for extracting histological parameters from multi-spectral images of the ocular fundus. The new method uses a Monte Carlo simulation of the reflectance of the fundus to model how the spectral reflectance of the tissue varies with differing tissue histology. The model is parameterised by the concentrations of the five main absorbers found in the fundus: retinal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3040275